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Abstract 26 

The availability of in-situ data has been a constraining issue in hydrological prediction, 27 

especially in those regions that are only sparsely monitored or completely ungauged. The 28 

application of remote-sensing data, without conventional in-situ hydrological measurements, to 29 

force, calibrate and update a hydrologic model is a major contribution of this study. First, a 30 

rainfall-runoff hydrological model called CREST, coupled with EnSRF, is used for exceedance 31 

probability-based flood prediction. Then, this advanced flood-prediction framework, with different 32 

experimental designs, is forced by TRMM precipitation while Aqua AMSR-E microwave 33 

brightness temperature signals is used for model calibration and data assimilation for 34 

progressively improved river discharge prediction. Results indicate that solely relying on remote-35 

sensing data for model forcing, parameter calibration, and state updating with EnSRF, the 36 

designed framework can adequately predict flooding events. A high flow threshold was applied 37 

and has further improved modeling performance, particularly in the flooding seasons, with a flood 38 

warning lead-time of one day. Given the anticipated global availability of satellite-based 39 

precipitation (i.e. GPM) and AMSR-E like passive microwave signal information (i.e. SMAP) in 40 

near real-time, this proposed research framework could potentially contribute to the exceedance 41 

probability-based flood prediction in the vast sparsely gauged or ungauged basins around the 42 

world. 43 

 44 

 45 
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1. Introduction 46 

Insufficient ground gauge observations have been historical barriers in hydrological predictions. 47 

Over the globe, especially in Africa, it is much more common for a given basin to be only sparsely 48 

or not monitored at all by in-situ observation networks. However, recent advancement in satellite 49 

remote-sensing technology bears the promising potential to overcome the limited spatial coverage 50 

of in-situ observation networks, thus providing the potential for hydrological predictions by being 51 

creatively used as the forcing (e.g. satellite precipitation estimation), calibration basis (e.g. passive 52 

microwave streamflow signal), and sources for assimilation (e.g. satellite-detected soil moisture 53 

estimation and passive microwave streamflow signals). This forecast system based entirely on 54 

remote-sensing information thus enhances the reliability of streamflow prediction in poorly-55 

gauged basins, and makes streamflow prediction possible even in ungauged basins. 56 

Considering hydrological modeling in those basins with limited ground surface observation 57 

networks, a great deal of success has been achieved through the recent availability of remote-58 

sensing precipitation data (e.g. [Hong et al., 2004; Huffman et al., 2007; Joyce et al., 2004; 59 

Sorooshian et al., 2000; Turk and Miller, 2005]). Besides utilizing the remote-sensing 60 

precipitation data as forcing, remote-sensing soil moisture data can also facilitate hydrological 61 

prediction by data assimilation approaches (e.g. [Crow and Ryu, 2009; Crow et al., 2005; Gao et 62 

al., 2007; V Pauwels et al., 2002]). A number of studies have shown improved accuracy by 63 

calibrating hydrologic models and through assimilating in-situ soil moisture observations and 64 

gauge-based streamflow measurements into hydrological models. (e.g. [Aubert et al., 2003; Clark 65 

et al., 2008; V R Pauwels and De Lannoy, 2006]). The use of streamflow estimates from remote-66 

sensing methods is a new area being explored, also for model calibration and data assimilation. 67 

Recently, the Global Flood Detection System (GFDS, http://www.gdacs.org/flooddetection/), 68 

http://www.gdacs.org/flooddetection/
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began using a passive microwave sensor, AMSR-E, together with the Tropical Rainfall 69 

Measurement Mission (TRMM) Microwave Imager (TMI), to measure surface brightness 70 

temperatures, which can be used creatively to infer streamflow and thus show the potential to 71 

monitor floods over the globe [Brakenridge et al., 2007]. While prior studies have evaluated the 72 

potential application of the AMSR-E sensor for discharge estimation and flood detection [Salvia et 73 

al., 2011; Temimi et al., 2007; Temimi et al., 2011], they all required in-situ streamflow 74 

information. In this study, the passive microwave streamflow signals are utilized directly, without 75 

in-situ streamflow observations, in a hydrologic model to calibrate the hydrological model first; 76 

then the frequency (exceedance probability) of the remote-sensing streamflow signals is 77 

assimilated into the hydrological model in order to demonstrate probabilistic flood prediction for 78 

an African basin. 79 

2. Study Basin, Data Sources and Methodology 80 

2.1 Study Basin 81 

    The Okavango River, which runs for about 1100 km from central Angola and flows through 82 

Namibia and Botswana, is the fourth longest river in southern Africa (Figure 1.). The 83 

Okavango catchment is approximately 413,000 km
2
; it originates in the headwaters of central 84 

Angola, then the Cubango and Cuito tributaries meet to form the Cubango-Okavango River 85 

near the border of Angola and Namibia and flow into the Okavango Delta in Botswana. The 86 

upper stream region belongs in a subtropical climate zone with annual precipitation around 87 

1300mm while the downstream region, which contains the Kalahari Desert, belongs to the 88 

semi-arid climate zone with annual precipitation around 450mm [D A Hughes et al., 2006; 89 

Christian Milzow et al., 2009a]. The headwater region, which is the northern part of the basin, 90 

is mainly covered by the ferralsols soil with a lower hydraulic conductivity. The headwater 91 
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region also has a high forest cover and contributes significantly to the river runoff [D A 92 

Hughes et al., 2006]. The rest of the basin is dominated by arenosals soil (www.sharing-93 

water.net), which is very porous with high hydraulic conductivity, so that water drains rapidly, 94 

leaving little moisture for plants. As mentioned by [D A Hughes et al., 2006], around 95% of 95 

inflow is lost in the atmosphere due to high potential evapotranspiration rate and only a small 96 

portion contributes to groundwater.  97 

    Several studies in the Okavango River Basin have investigated the hydrological response 98 

under climate change [Andersson et al., 2006; D Hughes et al., 2011; D A Hughes et al., 2006; 99 

McCarthy et al., 2003; Christian Milzow et al., 2009b]. Since the Okavango River basin is one 100 

of the most important economic and water resources in southern Africa, additional studies 101 

have been solicited to assist in the decision-making for water management in this basin. The 102 

main tributary of Okavango River - the Cubango River, which is mainly located in Angola, is 103 

selected as the study basin. It accounts for a majority of the available water resources in the 104 

Okavango river. The Rundu gauge station is the outlet of the Cubango River; at Rundu Gauge, 105 

both gauge-based streamflow and the remote-sensing discharge estimates (i.e., the AMSR-E & 106 

TMI streamflow signals) are available.   107 

2.2 Data Sources 108 

    This study develops an advanced exceedance probability-based, flood-prediction framework, 109 

which is based entirely on satellite remote-sensing data without a requirement of conventional 110 

in-situ hydrological measurements. The in-situ streamflow observation is only used in this 111 

study to evaluate the exceedance probability-based hydrological prediction algorithm. The 112 

proposed data sets that were applied in this study include: 113 

 TRMM RT Satellite Precipitation Estimates 114 

http://www.sharing-water.net/
http://www.sharing-water.net/
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    Tropical Rainfall Measuring Mission (TRMM) satellite precipitation estimation is taken as 115 

an alternative forcing data into hydrological modeling in this study since the Okavango River 116 

Basin is poorly gauged [C. Milzow et al., 2011]. TRMM Multi-satellite Precipitation Analysis 117 

(TMPA) provides two standard 3B42-level products: the near-real-time 3B42 RT which uses 118 

the TRMM combined instrument dataset to calibrate the data and the post-real-time research 119 

product 3B42 V7 (level 7) which adjusts the rainfall accumulation by gauge analysis [Huffman 120 

et al., 2007]. Both 3B42 RT and 3B42 V7 products are quasi-global with coverage from 50°N 121 

to 50°S latitude. In this study, the TRMM 3B42 RT with a spatial resolution of 0.25° 122 

(approximate to 25km in the tropical area) and temporal resolution of three hourly, is 123 

processed into daily accumulations as well as basin averages and applied as the forcing data to 124 

drive the hydrological model. 125 

 FEWS PET 126 

    PET (Potential Evapotranspiration) comes from the Famine Early Warning System Network 127 

(FEWS NET; http://igskmncnwb015.cr.usgs.gov/Global/) with a spatial resolution of 0.25°, 128 

and is likewise processed into daily and basin averages as additional forcing to the model. 129 

 The Passive Microwave Streamflow signal from TRMM and Aqua 130 

    The Global Flood Detection System uses near-real-time, satellite-based, remote-sensing data 131 

to monitor floods over the globe. In this system, a passive microwave sensor, AMSR-E, 132 

together with TRMM TMI (TRMM Microwave Imager) sensor, is used to measure the 133 

brightness temperature at 36.5GHz, descending orbit with horizontal polarization, which 134 

responds to surface wetness and thus flooding [Brakenridge et al., 2007]. A wet pixel (usually 135 

over the surface of a river) is selected to measure the brightness temperature of the 136 

measurement (M) area while an adjacent dry pixel is selected to measure the brightness 137 
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temperature of the calibration (C) area (usually over the land near the wet pixel); the ratio of 138 

the measurement and calibration brightness temperature is referred as the streamflow signal 139 

(Eq. (1)).  140 

 / /m cM C Ratio Tb Tb                                                        (1) 141 

The main merit of the AMSR-E passive microwave sensor onboard the NASA EOS Aqua 142 

satellite is that it is not restricted by cloud cover and provides data availability for daily flood 143 

monitoring over the globe. For further detailed information regarding the GFDS streamflow 144 

signals, please refer to [Brakenridge et al., 2007; Kugler and Groeve, 2007].  145 

 Ground-based streamflow observation  146 

    Besides the passive microwave streamflow signal data at Rundu for both calibration and 147 

assimilation (will be specified in 2.5 Experiment design), ground-based streamflow 148 

observation at Rundu, Namibia, was used to evaluate the performance of the proposed 149 

“exceedance probability based flood-prediction framework”
 
[Khan et al., 2012] in an upstream 150 

catchment – Cubango of around 95000km
2
  151 

2.3 Model 152 

    In this study, a simplified and lumped version of the CREST (Coupled Routing and Excess 153 

STorage , [Wang et al., 2011]) was applied, together with the satellite data and the EnSRF 154 

(Ensemble Square Root Filter) data assimilation approach, to provide exceedance probability-155 

based hydrological predictions over the Cubango basin. The model structure is shown by 156 

Figure 2: following the forcing data of precipitation and potential evapotranspiration, there is 157 

one excess storage reservoir by the vegetation canopy and three surface water excess storage 158 

reservoirs representing the three underlying soil layers. Then, the flow into each of three 159 
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overland flow linear reservoirs and one interflow reservoir is governed by the overland 160 

reservoir discharge multiplier LEAKO and the interflow reservoir discharge multiplier LEAKI.  161 

2.4 EnSRF 162 

A sequential data assimilation technique - Ensemble Square Root Filter (EnSRF), is applied 163 

to assimilate passive microwave streamflow signals into CREST. Unlike the traditional EnKF 164 

which requires perturbing both forcing data and observations, the EnSRF only perturbs the 165 

forcing data and the ensemble mean is updated by the observation. [Whitaker and Hamill, 166 

2002] demonstrated that there is no additional computational cost by EnSRF relative to EnKF, 167 

and EnSRF performs more accurately than EnKF for the same ensemble size. But it still 168 

remains a research topic to compare the accuracy and efficiency of different sequential data 169 

assimilation approaches (e.g. EnKF, EnSRF). The major equations of EnSRF are listed below: 170 

       ̂                                                              (2) 171 

aX  is the updated estimate of the analyzed state (              and n is the number of 172 

ensembles); 173 

bX is the background model forecast, which is also referred to the first guess in data 174 

assimilation (    dimension);  175 

y  is the observation (    dimension and   is the number of observations), which is the 176 

streamflow measurements in this study;  177 

H is the observation operator that converts the states in the model into observation space 178 

(    dimension);  179 

 ̂ refers to the traditional Kalman gain. 180 

Let’s denote the ensemble    as  181 

                                                          =(  
    

      
 )                                                 (3) 182 
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Where we ignore time index and the subscript represents the ensemble member. The 183 

ensemble mean is then defined as  184 

  ̅̅̅̅   
 

 
∑   

  
                                                                  (4) 185 

   The perturbation from the mean for the i th member is  186 

  
      

     ̅̅ ̅                                                          (5) 187 

Then      is defined as a matrix formed from the ensemble of perturbations: 188 

                               
     

       
                                                  (6) 189 

 An estimation of background error covariance is defined as 190 

 ̂  
 

   
                                                             (7) 191 

However, in practice, we do not calculate  ̂ , but rather calculate  ̂    and   ̂    are 192 

evaluated by the following equations: 193 

 ̂    
 

   
∑    

   ̅       
       ̅̅ ̅̅ ̅̅ ̅̅       

                              (8) 194 

  ̂    
 

   
∑      

      ̅        
       ̅̅ ̅̅ ̅̅ ̅̅     

                 (9) 195 

    Here, m is the ensemble size. Then the traditional Kalman gain  ̂ can be calculated by Eq 196 

(10),  197 

 ̂   ̂      ̂                                                                    (10) 198 

    R is the observation error covariance with a dimension of      In EnSRF, the reduced 199 

Kalman gain  ̃ is used to update the deviation from the ensemble mean as estimated by the 200 

following equation,  201 

 ̃     √
 

  ̂     
    ̂                                                 (11) 202 

    The ensemble mean can be updated by 203 

 ̅ 
   ̅ 

   ̂      ̅ 
                                                    (12) 204 
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    The perturbation (deviation of ensemble mean) can be updated by 205 

          
     

    ̃    
                                                        (13) 206 

    The final analysis follows as  207 

  
  

   ̅ 
    

                                                                 (14) 208 

     As mentioned above, when the EnSRF is applied, the forcing data (which is the 209 

precipitation in this study) needs to be perturbed. Precipitation perturbations in this study are 210 

defined as  211 

                                                                       (15) 212 

     where    is a random noise factor drawn from a Gaussian distribution 213 

                                                                         (16) 214 

    At each time step, an independent rainfall error is generated by Gaussian distribution (refer 215 

to eq. (15) and (16)) and added to the original basin average precipitation.  216 

2.5 Experimental design 217 

The C/M radiance ratio, which is the reciprocal of M/C ratio signal (e.q. (1)), is correlated at 218 

a significant level with observed streamflow especially during the peak flow periods, as shown 219 

in Figure 3. Based on the high correlation coefficient between the gauge-based streamflow and 220 

the C/M radiance ratio, an innovative calibration method – the flood frequency approach, was 221 

proposed by [Khan et al., 2012], which first requires the conversion of model-simulated 222 

streamflow into exceedance probability, and then takes “max(CC)” as the objective function to 223 

conduct the automatic hydrological calibration via the algorithm Shuffled Complex Evolution 224 

– University of Arizona (SCE-UA, [Duan et al., 1994]). The flood frequency approach utilizes 225 

the period of recorded observations to compute the frequency or exceedance probability. This 226 

approach essentially normalizes the streamflow observations from absolute units (m
3
 s

-1
) to 227 

dimensionless values in the frequency domain. The same approach can be applied to any time 228 
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series data (i.e., passive microwave streamflow signal) as long as there is a sufficiently long 229 

record to represent climatological conditions and the signal is temporally correlated to 230 

streamflow. 231 

As shown by Table 1, experiment 1, which was conducted in absolute streamflow units (m
3
 232 

s
-1

), is the traditional gauged-based approach to model calibration and data assimilation. It sets 233 

the reference to be compared to the frequency-based, remote-sensing approaches in 234 

Experiment 2. Experiment 2 represents the advanced exceedance probability-based streamflow 235 

prediction framework; in Experiment 2, the passive microwave streamflow C/M radiance ratio 236 

at Rundu gauge was first used to automatically calibrate the model parameters as in 237 

Experiment 1, but using the flood frequency approach described in [Khan et al., 2012], and 238 

then the signal frequency was assimilated into CREST model via EnSRF.  239 

3 Results and Discussion 240 

Experiment 1 is the reference experiment; the model was calibrated by gauge-based 241 

streamflow observations for the period 2003 to 2005 with a computed RMSE of 34% and 242 

NSCE of 0.88. Then, the model was validated for the period 2006 to 2007, in which the RMSE 243 

shot up to 64% and the NSCE dropped to 0.33. In order to enhance the hydrological 244 

performance, the gauge streamflow observation was assimilated into the well-calibrated 245 

lumped CREST model via EnSRF at daily time step. After assimilation, the modeling 246 

performance was improved significantly during both calibration and validation periods. (Note: 247 

the statistical evaluation excludes the first half-year due to the bad first guesses at the 248 

beginning for each experiment.) The two simulations illustrated in Figure 4 serve as the stream 249 
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gauge-based reference for the Open Loop and Assimilation experiments focused on the use of 250 

the microwave streamflow signals hereafter. 251 

 Figure 3 shows the time series of the passive microwave C/M radiance ratio (green line), 252 

which is used as the streamflow proxy for automatically estimating the model parameters. The 253 

C/M radiance ratio matches well with the gauge streamflow observations during the high flow 254 

period, but shows noise during the low flow period because of the insensitivity of the AMSR-255 

E and TMI sensors to low flows. In Experiment 2(a), the sources of data for model calibration 256 

are the C/M radiance ratios, but the simulated and observed streamflow data have been 257 

converted into the frequency domain and expressed as the exceedance probability (Figure. 5a). 258 

This conversion degraded the skill of the Open Loop simulation compared to the one in 259 

Experiment 1 during the calibration period, but enhanced the Open Loop simulation during the 260 

validation period with NSCE increased from 0.33 to 0.81. After assimilation, the streamflow 261 

signal indicates a small peak near Nov 2003 that was not observed by the stream gauge 262 

(Figure .5(a)). This error was not reflected in the Open Loop simulation; however, by 263 

assimilating the C/M radiance ratio with noise into the model during the low flows, errors 264 

during low flows result. The performance of the simulations was poor for low flows, but 265 

remarkable for high flows. This latter feature prompted us to devise Experiment 2(b) the same 266 

as the Assimilation component of Experiment 2(a), but the radiance ratio data are assimilated 267 

only if the exceedance probability is < 30%. In other words, the C/M radiance ratio data are 268 

trusted only during high flow conditions. After application of this subjectively chosen 269 

threshold, the red curve in Figure. 5b illustrates very similar performance during high flows as 270 

in Experiment 2(a) (red curve in Figure. 5a), but the prior problems during low flows have 271 

been alleviated. The RMSE (26% during calibration period and 23% during validation period) 272 
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is even better than the reference simulations in Experiment 1 that assimilated gauge 273 

streamflow (in absolute units). The NSCE of 0.79 and 0.84 during calibration and validation 274 

periods, respectively, is only a slight reduction from the reference values. Nonetheless, this 275 

reduction is quite modest considering Experiment 2b is based entirely on remote-sensing data.  276 

Overall, the lumped CREST coupled with state estimation through an EnSRF approach can 277 

effectively improve flood prediction using remote-sensing data alone in the Cubango river 278 

basin. A limitation, as mentioned by [Khan et al., 2012] is that the use of AMSR-E signals for 279 

streamflow estimation is limited to medium- and large-scale basins. Moreover, the signal was 280 

found to be uncorrelated with observed streamflow during low flow periods. These constraints 281 

must be considered when using the GFDS streamflow signals to infer streamflow for 282 

hydrologic model calibration and state estimation.   283 

4 Conclusion 284 

The application of remote-sensing data, alone, to force, calibrate and update a hydrologic model 285 

is a major contribution of this study. More generally, the approach developed and benchmarked 286 

herein can have great potential for predicting floods for the vast number of river basins throughout 287 

the world that are poorly gauged or even ungauged. In the Cubango River basin, data from an in-288 

situ streamflow gauge was used for model calibration and data assimilation in a traditional manner, 289 

providing a benchmark for evaluating the use of the passive microwave sensor-derived streamflow 290 

signals as a proxy for streamflow. Then, the passive microwave streamflow signals were 291 

converted into exceedance probability; i.e., in the frequency domain, to be applied similarly as the 292 

traditional approach for calibration and assimilation. 293 

The major outcomes from this study are summarized as follows: 294 
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 In the absence of data assimilation (i.e., Open Loop), model performance was limited due to 295 

the inherent deficiencies of the model structure, but was more likely dominated by bias in the 296 

rainfall forcing from the TRMM 3B42RT algorithm.  297 

 The implementation of the EnSRF in all experiments resulted in a significant improvement 298 

over the Open Loop simulations except Experiment 2(a). 299 

 When the GFDS streamflow signals converted to the frequency domain were substituted as the 300 

streamflow proxy for the Open Loop simulation in Experiment 2(a), there was a significant 301 

reduction in model skill compared to using gauged streamflow during the calibration period, 302 

but there was a significant enhancement during the validation period. However, the 303 

assimilation of the GFDS signals during the calibration period degraded the RMSE to 36% 304 

(from 27% for Open Loop) and the NSCE to 0.61 (from 0.77 for Open Loop), which was 305 

worse than the values in the reference Experiment 1. This characteristic was found to be a 306 

result of poor sensitivity of the GFDS signal during low flow periods. 307 

 The final Experiment 2(b) assimilated the AMSR-E signal only if the exceedance probability 308 

was < 30%; i.e., during high flow periods. The application of this threshold resulted in model 309 

skill that was comparable to what was obtained in the reference Experiment 1.  310 

Given the real-time availability of satellite-based precipitation and AMSR-E and TMI-like 311 

passive microwave streamflow signal information, we argue that this work contributes to the 312 

decadal initiative of prediction in ungauged basins. Moreover, this study presents a potential 313 

paradigm shift in the use of streamflow exceedance probabilities, different from traditional 314 

methods reliant on in-situ streamflow observation for calibration, and towards new techniques and 315 

new types of observations. These observations and new methods are particularly imperative for the 316 

vast sparsely gauged or ungauged basins around the world. More promisingly, assimilation of 317 
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remote-sensing information for improving hydrological prediction can be increasingly appreciated 318 

and supported by the current TRMM and anticipated GPM (Global Precipitation Mission, to be 319 

launched in earlier 2014), together with the future SMAP (Soil Moisture Active and Passive, to be 320 

launched in 2014). Both missions are anticipated to provide better precipitation and surface 321 

wetness estimates in terms of coverage, accuracy, and resolutions, which bears promise to further 322 

improve flood predictions in combination with the proposed framework in this study. 323 

 324 

  325 
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 417 

Figure 1. Research Region – Cubango River Basin 418 

 419 

Figure 2. Structure of CREST Model 420 
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 421 

Figure 3. Time series of gauge streamflow observation plotted against primary y-axis and C/M 422 

Radiance Ratio plotted against secondary y-axis 423 

 424 

  Calibration Validation 

  RMSE(%) NSCE RMSE(%) NSCE 

Open Loop 34 0.88 64 0.33 

Assimilation 29 0.91 27 0.88 

 425 

Figure 4 Impact of assimilating gauge streamflow into CREST in Experiment 1.  426 

*Note: to the left side of the black dash line is the calibration period from 2003 to 2005; to the right 427 

side of the black dash line is the validation period from 2006 to 2007; the same for Figure. 4  428 

 429 
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 432 

 433 

  Calibration Validation 

  RMSE(%) NSCE RMSE(%) NSCE 

Open Loop 27 0.77 25 0.81 

Assimilation 36 0.61 31 0.69 

 434 

  Calibration Validation 

  RMSE(%) NSCE RMSE(%) NSCE 

Open Loop 27 0.77 25 0.81 

Assimilation 26 0.79 23 0.84 

 435 

Figure 5 Impact of assimilating Passive Microwave signal frequency into CREST in Experiment 2 (a) 436 

before threshold and (b) after threshold 437 
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Table 1. List of Experiments Design 443 

Exp 
 Calibration  

 data source 

Data Assimilated  

into Model 

Calibration objective 

function 

1 
 

Gauge Streamflow Gauge Streamflow Min(RMSE) 

2 

(a) Before  

Threshold Applied AMSR-E Signal 

Frequency 

AMSR-E Signal 

Frequency 
Max(CC) 

(b) After  

       Threshold Applied 
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